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Abstract

LH and FSH regulate via cyclic adenosine 3 '5 ' cyclic monophosphate (cAMP) and cAMP-dependent protein kinase (PKA),
steroid biosynthesis is Leydig and Sertoli cells, respectively. Cyclic AMP also regulates a number of di�erent cellular processes
such as cell growth and di�erentiation, ion channel conductivity, synaptic release of neurotransmitters, and gene transcription.

The principle intracellular target for cAMP in mammalian cells is the PKA. The fact that this broad speci®city protein kinase
mediates a number of discrete physiological responses following cAMP engagement, has raised the question of how speci®city is
maintained in the cAMP/PKA system. Here we describe features of this signaling pathway that may contribute to explain how
di�erential e�ects of cAMP may be contributed to features of the PKA signaling pathway. # 1999 Elsevier Science Ltd. All

rights reserved.

1. Cyclic AMP and the cAMP-dependent protein kinase
(PKA) signaling system

Reversible protein phosphorylation is a key regulat-
ory mechanism in eukaryotic cells. Protein phosphoryl-
ation was ®rst demonstrated to regulate the activity of
glycogen phosphorylase in response to glucagon [1,2].
A heat-stable factor mediating the e�ect of glucagon
on the phosphorylation status of glycogen phosphoryl-
ase was next identi®ed as 3 ',5 '-cyclic adenosine mono-
phosphate (cAMP) [3], and the concept of cAMP as
an intracellular second messenger to a wide range of
hormones (including gonadotropins), neurotransmit-
ters, and other signaling substances was developed [4].
The target for cAMP was puri®ed and identi®ed as a
cAMP regulated protein kinase [5], termed cAMP-
dependent protein kinase (PKA; EC 2.7.1.37). In the
absence of cAMP, PKA is an enzymatically inactive

tetrameric holoenzyme consisting of two catalytic sub-

units (C) bound to a regulatory subunit (R) dimer
(Fig. 1). Cyclic AMP binds cooperatively to two sites

on each R promoter [for review, see 6,7]. Upon bind-
ing of four molecules of cAMP, the enzyme dissociates

into an R subunit dimer with four molecules of cAMP
bound and two free, active C subunits that phosphory-

late serine and threonine residues on speci®c substrate
proteins.

At present, the cAMP/PKA signaling pathway is
known to be activated by a number of di�erent recep-

tors that upon binding of their respective ligands,
transduce their signals over the cell membrane by

coupling to G-proteins. These G-proteins interact with
adenylyl cyclase on the inner membrane surface either

to activate or to inhibit the production of cAMP.
Receptors that activates PKA through generation of

cAMP, regulate a vast number of cellular processes. In
addition to steroidogenesis, cAMP/PKA regulate

metabolism [8], gene activity [9], cell growth and div-
ision [10], cell di�erentiation [11,12], and sperm moti-

lity [13], as well as ion channel conductivity [14].
Therefore, a major challenge has been to understand
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how speci®city can be maintained in this second mes-
senger system.

2. Isozymes of PKA

Initially, two di�erent isozymes of PKA, termed I
and II (PKAI and PKAII, respectively), were identi®ed
based on their pattern of elution from DEAE-cellulose
columns [15,16]. The PKAI and PKAII, eluting at salt
concentrations between 25 and 50 mM and 150 and
200 mM NaCl, respectively, were shown to contain C
subunits associated with two di�erent R subunits,
termed RI and RII [6]. However, over the last 10 years
molecular cloning techniques have revealed a great het-
erogeneity in both R and C subunits which reveal the
potential of multiple isozymes of PKA.

2.1. Multiple isoforms of regulatory and catalytic
subunits of PKA

Cloning of cDNAs for regulatory subunits has
identi®ed two RI subunits termed RIa [17,18] and RIb
[19,20] and two RII subunits termed RIIa [21,22] and
RIIb [23,24] as separate gene products. The RIa and
RIb subunits are dissimilar, but reveal high homology
(81% identify at the amino acid level) as do the RIIa
and RIIb subunits (68% identify at the amino acid
level). Recently, alternative splice variants of the RIa
subunit has been demonstrated. RIa cDNAs with
di�erent leader exons and di�erentially regulated in-
itiation from two promoters of the RIa gene were
shown [25]. Furthermore, RIa and RIIb are stimulated
by cAMP both in Leydig cells and Sertoli cells, and

thus tune cAMP/PKA responsiveness within its own
signaling system.

Two distinct C subunits were initially identi®ed by
molecular cloning, and were designated Ca [26] and
Cb [27,28]. The cloning of the Ca and Cb subunits
from human testis by low homology screening also
revealed an additional C subunit, designated Cg,
expressed only in late pachetyne spermatocytes and
early haploid germ cells in primates [29,30]. Recent
work has also revealed the existence of splice variants
of the human form of Ca(Ca2), which is catalytically
inactive due to truncation of the C-terminal region
[31]. Furthermore, a splice variant of the bovine form
of Cb (Cb2) where the mRNA encodes a protein with
an additional amino terminal 47 amino acids has been
identi®ed [32]. Recently, two novel brain speci®c splice
variants of the mouse Cb form (Cb2 and Cb3) have
been cloned [33,34]. The previously described Cb has
now been designated Cb1 [28]. Cb2 and Cb3 represent
N-terminal truncated splice variants and are catalyti-
cally fully active.

2.2. Features of the regulatory and the catalytic subunits
of PKA

2.2.1. Structure of the regulatory subunits
The RI and RII subunits contain an amino terminal

dimerization domain, a region responsible for inter-
action with the C subunit, and in the carboxy termi-
nus, two tandem cAMP binding sites, termed sites A
and B [35,36]. Dimerization was initially discovered by
the fact that proteolytic cleavage in the hinge region of
the molecule would produce a monomeric R subunit
with a cAMP binding activity [37]. For the RI subu-
nits, dimerization involves two disul®de bridges (Cys16
and Cys37) [38]. Dimerization of the RII subunit does
not involve cysteines, but the domain responsible for
dimerization resides in the amino terminal part of the
protein (amino acids 1±30) [39]. Despite that residues
in the amino terminus (amino acids 1±5) of the RII
dimer interact with anchoring proteins, it is assumed
that additional contact points within the region 1±82
may exist [39]. The hinge region of the molecule, that
has a site sensitive to proteolysis, is involved in bind-
ing to the substrate binding site of the C subunit. The
RII subunits serve as true substrates and are phos-
phorylated by the C subunits of PKA. In contrast, the
RI subunits are not phosphorylated and bind C's as
pseudosubstrates. Of the two tandem cAMP binding
sites, only site B is exposed in the inactive tetrameric
PKA complex [reviewed in 7]. Binding of cAMP to
this site enhances binding of cAMP to the A site in a
postively cooperative fashion, as a result of the confor-
mational change in the molecule. The characteristics of
the two cAMP binding sites have been described in
detail elsewhere [reviewed in 6,7,40], as have the rela-

Fig. 1. Cyclic AMP-dependent protein kinase (PKA) is a holoenzyme

consisting of a regulatory (R) subunit dimer and two catalytic (C)

subunits. Activation of PKA occurs when four molecules of cAMP

bind to the R subunit dimer, two to each subunit, in a positive coop-

erative fashion. When both cAMP binding sites (A and B) are occu-

pied the R subunit adopt a con®rmation with low a�nity for the C

subunit and the holoenzyme dissociate. The relation between free C

subunits, the R subunit dimer and the intact holoenzyme is an equili-

brium which is determined by several factors, that include the rela-

tive concentration of PKA subunits, cAMP in addition to salt

concentration, pH and temperature.
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tive a�nities and site selectivity's of a wide array of
chemically modi®ed cAMP analogs [41]. The crystal
structure of a monomeric RI deletion mutant (D1±91)
has been reported [42], and this provides a model for
cAMP-binding.

2.2.2. Structure of the catalytic subunits
All the C subunits (Ca, Cb, Cg ) have catalytic core

motifs that are common to all protein kinases [43,44],
and involve a MgATP binding site as well as a peptide
binding site. The crystal structure of the murine Ca
subunit was the ®rst protein kinase crystal structure
available [45]. This has served as a template for model-
ing all other kinases. The catalytic subunit is a nearly
globular protein with two lobes. The small, amino
terminal lobe is involved in MgATP-binding, whereas
the larger carboxy terminal lobe is involved in peptide
binding and catalysis. Both MgATP and the peptide
come together for catalysis in the cleft between the
two lobes. The C subunit (except the inactive Ca2)
contain a domain that involves additional sites apart
from the peptide binding site [46]. This site is capable
of binding the heat stable protein kinase inhibitor
(PKI). PKI, which contains a NES (nuclear export sig-
nal), has the ability of transporting the C subunit from
the nucleus to the cytosol and serves as a major regu-
lator of C subunit activity [47]. Interestingly, the Cg
subunit is mutated at amino acid 133 and does not
bind PKI, and may thus not be exported from the
nucleus [47,48]. Furthermore, all the C subunits except
bovine Cb2 and mouse Cb2, have the potential of
being myristoylated at the N-terminus. This modi®-
cation that may serve to stabilize the C subunit sec-
ondary structure [46,49]. Despite that the bovine Cb2
lacks a myristoylation site, the N-terminal extension
which is hydrophobic, may serve the same function
[16].

3. Regulation of levels and expression of the regulatory
and catalytic subunits

In a number of di�erent cells and tissues extensive
studies have been performed in order to demonstrate
di�erential expression of R and C subunits. Levels of
expression of the di�erent PKA subunits are subject to
regulation by hormones acting through G-protein
coupled receptors [50±52], mitogen signals through
receptors associated with protein tyrosine kinases
(PTK) [53], as well as by steroid hormones [54].
Regulation of PKA by hormones acting through
cAMP may serve as an autologous sensitization±desen-
sitization mechanism of the cAMP e�ector system.

Cyclic AMP mediated regulation of levels of PKA
subunits acts through primarily gene transcription

[55,56] but also in¯uences mRNA stability [57]. At the
protein level stability's of R and C subunits are heavily
dependent on the degree of dissociation of the holoen-
zyme, which is regulated by cAMP [55,58].

3.1. Developmental expression of regulatory and
catalytic subunits of PKA

Gonadal tissues have a high level of a subunits as
well as b subunits of PKA. Age studies of whole rat
testes revealed distinct developmental changes in the
expression of PKA subunits [57,59,60]. At a prepuber-
tal stage high levels of RIa (2.8 and 3.2 kb), RIIa (6.0
kb), RIIb (3.2 kb), and Ca (2.4 kb) mRNAs was
detected. These are the mRNA species primarily seen
in somatic cells. During puberty germ cells increase ex-
ponentially and haploid cells appear. At later stage the
large number of germ cells dominate the testis and di-
lute signals from somatic cells in. During this time
period small germ cell mRNA's encoding RIa, RIIa,
and RIIb and mRNAs appear. These shorter messages
result from germ cell speci®c use of alternative polya-
denylation site signals and may be important for long
term storage of mRNA [60]. Whereas the RIa, RIb,
and Ca subunits in germ cells are induced at premeio-
tic and meiotic stages, the RII subunits are induced
only during spermatid elongation. The Cb mRNA was
detected in peritubular cells and Leydig tumor cells
but not in Sertoli cells or germ cells [60].

3.2. Regulation of PKA subunits in rat Sertoli cells and
Leydig cells

Rat Sertoli cells serves as a good model system for
studies of hormone responsiveness in general and of
PKA regulation in particular. FSH and cAMP induce
aromatization of testosterone to estradiol-17b and
stimulate both regulatory and catalytic subunits of
PKA. The up-regulation of RIa, RIIb, and Ca
mRNAs after treatment by cAMP is, at least partly,
due to an increased transcriptional activity [56], and in
the case of RIIb also involves increased stability of the
mRNA [57]. Very similar e�ects are observed after
stimulation of tumor Leydig cells (MA-10) with hCG
or cAMP [61]. In Sertoli cells, similar regulatory
changes are observed in RIa, RIIa and RIIb protein
[62].

Di�erent mechanisms are involved in the regulation
of the RIIb and RIa genes. Whereas transcriptional ac-
tivity of the RIa gene (maximal at 30 min) is induced
with similar kinetics as that of the c-fos gene, the in-
duction of the RIIb gene is increasing throughout the
observation period (120 min). Furthermore, the RIa
mRNA is superinduced by combined treatment with
cAMP and a protein synthesis inhibitor (cyclohexi-
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mide). In contrast, inhibition of protein synthesis
almost completely blocks the cAMP-mediated induc-
tion of the RIIb gene [56]. Regulation of the RIIa
gene appears to be qualitatively similar to that of
RIIb, but is quantitatively less pronounced.

The RIa and RIIb genes are also subject to regu-
lation by PKC [63]. Again the mechanisms of regu-
lation appear to be di�erent. PKC-dependent
activation of RIa is una�ected by cycloheximide
whereas induction of RIIb is dependent of on-going
protein synthesis [63]. Cyclic AMP and TPA have
additive e�ects on the regulation of the RIa message,
whereas TPA inhibits the cAMP-mediated induction of
the RIIb gene.

Thus, there is extensive evidence showing di�erential
mechanisms of regulation of the R subunit genes. The
RIa gene seems to be regulated by cAMP with similar
characteristics as the cAMP response element (CRE)
regulated c-fos gene. The 5 '-¯anking sequence of the
RIa gene contains a consensus CRE that is conserved
between pig [64] and man [25]. Furthermore, cloning
of an alternatively spliced mRNA with a di�erent lea-
der exon leads to the identi®cation of two alternatively
initiated promoters in the RIa gene that are di�eren-
tially regulated [25]. In contrast, the RIIb gene has a
regulation by cAMP distinct from that of RIa and c-
fos, and belongs to a group of genes which respond to
cAMP with slower kinetics and have a cAMP-respon-
sive regions distinct from the classical CRE, TRE, and
AP-2 elements [65±67].

3.3. Regulation of PKA subunits by mitogens

While activation of PKA leads to a mitogenic re-
sponse in Leydig cells and Sertoli cells, the opposite is
seen in many other cell types e.g., lymphocytes. Such
cells are di�erent from steroidogenic cells and express
both RIa2Cb2 and RIIa2Cb2, but lack RIIb2C2 [68].

Upon T cell receptor triggering, an initial peak of
cAMP and PKA activity [53,69] is observed that may
serve as an acute negative modulator and a negative
feedback of signaling through TCR. This is followed
by regulatory changes of R and C subunit levels within
hours of stimulation. The biological implication of this
regulation may be that the R/C ratio is transiently
increased, leading to a down-regulation of PKAI ac-
tivity, which may be important for the G/S transition
of the cell cycle, following TCR-induced mitogen
stimulation [68]. Similar reciprocal regulation of level
of RIa and mRNA and protein was observed in a
panel of lymphoid cell lines investigated for PKA regu-
lation, levels of cAMP and cell growth [70]. In con-
trast, activation of PKA by cAMP in both Leydig cells
and Sertoli cells leads to a mitogenic e�ect with sub-
sequent increase in RIIb mRNA and protein [51].

3.4. Transcriptional regulation of the genes for PKA
subunits

Upstream regulatory sequences have been reported
for the genes encoding RIa [25,64], RIb [71], RIIa [72],
RIIb [73,74], Ca [75], and Cb [75]. All these genes have
GC-rich and TATA-less promoters. Furthermore, the
human gene for RIa has two promoters directing ex-
pression of alternatively initiated RIa mRNAs with
di�erent 5 ' non-translated regions. The two di�erent
promoters provide a more complex regulation of the
RIa mRNA and proteins [25,76].

Regulation of the RIIb gene have been subject to
extensive studies. RIIb was ®rst isolated and cloned
from rat granulosa cells [23] where a 6±10-fold induc-
tion of its mRNA by cAMP is seen [77]. Studies of the
5 '-¯anking region of the rat RIIb gene in ovarian
granulosa cells revealed that the cAMP-responsiveness
resided within a distinct region (ÿ395 to ÿ293)
upstream of the translation initiation codon [73].

For transfection in Sertoli cells, 5 '-deletions of the
RIIb ¯anking region were inserted in front of a CAT
reporter gene. Basal CAT activity directed from the
di�erent constructs was reduced to approximately 50%
when the region ÿ723 to ÿ395 was included. The
same region conferred cAMP responsiveness to the
CAT reporter gene. In contrast, transfections of the
same constructs into rat testis peritubular cells revealed
that the cAMP-responsiveness as well as the inhibition
of basal activity that resided within the region ÿ723 to
ÿ395 was speci®c to Sertoli cells. Mapping of the
cAMP-responsive region by gel retardation and
DNAse I footprinting experiments identi®ed several
protected regions that are candidates for novel cAMP
responsive elements [78].

4. PKA isozyme composition and characteristics

It is generally assumed that the catalytic subunits as-
sociate freely with homodimers of all the R subunits.
However, PKAI holoenzymes are more readily disso-
ciated by cAMP in vitro than PKAII holoenzymes
[6,79]. Furthermore, when RII is overexpressed in 3T3
cells, the C subunit will preferably be bound to RII,
whereas RI will be present as free dimer [80]. This in-
dicates that PKAII holoenzyme forms preferentially
compared to PKAI under physiological circumstances
either due to lower sensitivity to cAMP or due to kin-
etics of association/dissociation in¯uenced by salt and
MgATP [reviewed in 7]. This observation is con®rmed
in mice that are genetically null mutant for the RIIb
subunit where RIa is induced and PKAI is formed,
not as a result of increased transcription of the RIa
gene, but rather due to an increased half life (up to 5-
fold) of the RIa protein when associated with C [81].
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Furthermore, the PKAI (RIa2C2 and RIb2C2) and
PKAII (RIIa2 and RIIb2C2) holoenzymes have distinct
biochemical properties. RIb holoenzymes are 2- to 7-
fold more sensitive to cyclic nucleotides than RIa
holoenzymes [82±84]. RIIa and RIIb holoenzymes
elute from DEAE-cellulose columns at di�erent pos-
itions in the PKAII area, and RIIa expressed at high
levels will compete with RIIb in binding the C subunit,
indicating either a higher a�nity for the C subunit or
a higher threshold for cAMP induced dissociation [85].

Characterization of a cell line almost completely
devoid of PKAII, revealed the presence of an isozyme
consisting of an RIa±RIb heterodimer with associated
phosphotransferase activity. This isozyme elutes in the
position of PKAII by DEAE-cellulose chromatog-
raphy [86]. Formation of RIa±RIb heterodimeric com-
plexes was also demonstrated in vitro by
coimmunoprecipitation, using recombinant proteins
[86]. How PKA isozyme composition relates to steroi-
genic responses remains to be elucidated.

5. Subcellular localization of PKA

Compartmentalization of PKA is mediated through
binding of the R subunit to subcellular components
[87]. In general, PKAI (RIa2C2, RIb2C2) is soluble and
is preferentially located to the cytosol. However, there
are an increasing number of reports of RIa association
with subcellular components of the cell. In lympho-
cytes, RIa associates with the antigen receptor during
activation and capping [88,89], and in muscle RIa has
been implicated at the neuromuscular junction [90].
Moreover, it was recently demonstrated that RIa binds
to the adapter protein Grb2, an association which
allows PKAI to interact with the epidermal growth
factor receptor in epithelial MCF-10A cells [91].
Furthermore, a recent report demonstrated a dual-
speci®city. A kinase anchoring protein (AKAP) for
both RIa and RIIa. This AKAP is designated D-
AKAP1 [92]. In contrast to PKAI, PKAII isozymes
(RIIa2C2, RIIb2C2) are generally associated with the
particulate fraction of the cell through the hydro-
phobic interaction of AKAPs with the dimerization
domain of RII [93]. A number of di�erent anchoring
proteins have been identi®ed and serve to sequester
PKAII with the cytoskeletal elements such as microtu-
bules (MAP2), postsynaptic densities and cortical actin
(AKAP79/75), ®lopodia (Gravin/AKAP250), actin-
binding proteins (ezrin/AKAP78) and centrosomes
(AKAP350) [94±98]. Also membrane anchored and
organelle associated AKAPs have been identi®ed, such
as AKAP100 of the smooth sarcoplasmatic reticulum,
AKAP220 on peroxisomes, AKAP85 bound to the
Golgi, AKAP84/149 in mitochondria and AKAP15/18
membrane anchored and associated with the L-type

CA2+ channel [99±106]. Furthermore, despite the
absence of PKA R subunits from the nucleus, nuclear
AKAPs (AKAP95, hAKAP150) have been identi®ed,
the biological signi®cance of these AKAP are still elu-
sive as PKAII holoenzyme complex is excluded from
the nuclei in interphase [107]. However, AKAP95
detaches from nuclear matrix at mitosis and colocalizes
with RIIa outside the metaphase plate [108]. As a
further re®nement of speci®city in binding of PKAII
to AKAPs, it has been demonstrated preferential as-
sociation of AKAP95 with RIIa and not RIIb [107],
and that RIIa but not RIIb associate with the Golgi
apparatus where as RIIb preferentially associate with
centrosomes [109]. Interestingly, it has recently been
reported that some AKAPs (AKAP79, Gravin) func-
tion as signaling sca�old proteins by binding and
assembly of di�erent signaling proteins such as phos-
phates 2B (Calsineurin) and PKC in addition to
PKAII [110]. Whether such ``signaling units'' play a
role in steroidigenic responses is not known.

6. E�ects of cAMP mediated by speci®c isozymes of
PKA

Since the demonstration of a multitude of PKA iso-
zymes, a key question has been to what extent di�erent
e�ects of cAMP may be mediated by speci®c isozymes.
Approaches such as selective activation of one PKA
isozyme by the use of combinations of cAMP analogs
to complement each other in the preferential activation
of PKAI or PKAII has demonstrated isozyme-speci®c
e�ects of cAMP in cells. However, a major break-
through in understanding the role of various isozymes
of PKA in vivo, was ®rst made by creating mice that
are null mutant for speci®c PKA subunits.

6.1. Cyclic AMP e�ects mediated by PKAI

It is generally assumed that speci®c isozymes of
PKA localized to subcellular structures, mediates dis-
tinct e�ects of cAMP. The PKAI isozymes (RIa2C2,
RIb2C2) appears generally soluble and freely distribu-
ted in the cytoplasm [111]. Thus, it may appear that
PKAI is promiscuous in its phosphorylation of pro-
teins and regulates all activities that are triggered by
cAMP. However, lymphoid cells have proved to be
good model systems to demonstrate the speci®city in
cAMP signaling. Cell growth of Reh cells which are
practically devoid of PKAII [86] are inhibited by
cAMP. In Reh cells, stable transfection with Ca pro-
liferation was speci®cally inhibited, an e�ect that could
be counteracted by cotransfection of a dominant nega-
tive mutant of RIa, that does not bind cAMP [112].
These results testify to the role of the C subunit in
mediating cAMP-dependent inhibition of cell prolifer-

V. Hansson et al. / Journal of Steroid Biochemistry and Molecular Biology 69 (1999) 367±378 371



ation in lymphoid cells, but do not de®ne the PKA
holoenzyme responsible for mediating the cAMP
e�ect. However, since Reh cells contains exclusively
PKAI, this result strongly indicate that the inhibitory
e�ect of cAMP on lymphoid cell proliferation can be
mediated via this isozyme. The inhibitory e�ect of
cAMP through PKAI on cell proliferation have further
been veri®ed in T and B cells. Both these cells contain
PKAI (RIa2Cb2) and PKAII (RIIa2Cb2) in a pro-
portion of 3:1 [68,88]. In resting cells the PKAI is 75%
soluble whereas 75±90% of the PKAII is particulate.
Quiescent cells can be activated to proliferate by cross-
linking antigen receptor complexes (TCR/CD3 and
BCR/Ig-complex, respectively). To test whether PKAI
or PKAII mediates the inhibitory e�ect on prolifer-
ation of lymphoid cells, chemically modi®ed cAMP
analogs selective for either site A or site B of PKAI
and PKAII [41,113] were used. The combination of 8-
piperidino-cAMP (8-pip) and 8-aminohexylamino-
cAMP (8-AHA) synergized in inhibiting incorporation
of [3H]thymidine in proliferating cells when compared
to the e�ect of 8-AHA alone. No such synergism was
observed when inhibition by 8-(4-chlorophenylthio)
cAMP (8-CPT) was examined in the absence and pre-
sence of a small priming dose of N6-benzoyl-cAMP
(N6-Bnz) that by itself had no e�ect on T and B cell
proliferation. The combination 8-pip/8-AHA synergies
strongly in the activation of PKAI. This is contrary to
activation of PKAII where both 8-pip and 8-AHA
compete for binding to the B site. In contrast, the
combination of N6-Bnz and 8-CPT tends primarily to
activate PKAII. This is because 8-CPT binds to the B
site of RII with much higher a�nity than to the PKAI
B site and N6-Bnz binds to the A site of both RI and
RII. Thus, inhibition of cell proliferation by cAMP
appears to be a PKAI-mediated e�ect. Furthermore,
using the same approach on metabolic responses, we
demonstrated that cAMP-dependent inhibition of NK
cell cytotoxicity is mediated by PKAI [114]. In ad-
dition, isozyme-speci®c e�ects of PKAI has been
demonstrated in that cAMP-induces apoptosis of a
myeloid leukemia cell line (IPC-81) [115].

Further evidence for speci®c roles of PKA in vivo
was ®rst obtained when mice null mutant for the RIb
subunit were generated. These animals appeared
healthy and fertile, but examination of brain slices
revealed that they had lost the ability to undergo long
term depression (LTD) in the Scha�er Collateral path-
way. The RIa, RIIa and RIIb are expressed in the hip-
pocampus [116] but appears unable to compensate
functionally for the loss of RIb [117].

6.2. Cyclic AMP e�ects mediated by PKAII

Both RIIa and RIIb have been reported to localize
to the Golgi-centrosomal area of di�erent cell types

[118] and the RIIb subunit is subject to extensive regu-
lation by cAMP in steroidogenic cells. Centrosomal
localization of the RII subunits is in agreement with
the observations in T cells, and may suggest involve-
ment of PKAII in cell cycle control and formation of
the spindle apparatus. Colocalization and coimmuno-
precipiation of RIIa of PKAII with p34cdc2 kinase has
also been reported [119], whereas RIIb has recently
been shown to serve as a substrate for cdc2 kinase in
vitro [120]. However, a speci®c function of PKAII
from these studies that can be ascribed to this localiz-
ation remains to be shown. Furthermore, a previous
study [121] showed that PKAII activity was associated
with regulation of AMPA (alpha-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid)/kainate Ca2+ chan-
nels. Disruption of PKAII (RII) binding to the AKAP
associated with the AMPA receptor impairs the
PKAII-dependent regulatory e�ect on the Ca2+ ¯ux in
cultured hippocampal neurons. Similarly, speci®c
anchoring of PKAII was necessary for cAMP-
mediated modulation of the L-type calcium channel in
heart skeletal muscle [37]. Also, PKAII (RIIb2C2) has
been shown to mediate cAMP-dependent activation of
lipolysis and glycerol release from adipocytes in vitro
[122]. Interestingly, similar e�ects have been shown in
vivo in adipocytes of mice lacking the RIIb subunit
[123]. Disruption of the mouse RIIb gene leads to a
profound change in PKA composition in both white
and brown adipose tissue (WAT, BAT), where RIIb
normally is the principal R subunit. WAT was signi®-
cantly diminished in these animals despite normal food
uptake and the animals were protected against diet-
induced obesity and fatty liver. In the RIIb null
mutated mice, levels of RIa in brown adipose tissue
were induced, generating an isozyme switch from
PKAII to PKAI. Moreover, these studies also showed
that the RIa containing holoenzyme is more readily
activated by cAMP and causes an induction of uncou-
pling protein (UCP), increased metabolic rate and elev-
ated body temperature, which together contribute to a
chronically lean phenotype of RIIb null mutant mice.
These results are the ®rst to demonstrate a speci®c
e�ect of PKAII (RIIb2C2) in vivo which was not com-
pensated for by upregulation of PKAII holoenzymes.
Finally, recent studies have revealed that cAMP-
mediated signaling to the nucleus may partly depend
on speci®c anchoring of PKAII isozymes as overex-
pression of AKAP increased cAMP-regulated reported
gene activity. In contrast, an over all disruption of
AKAP79 by overexpression of a soluble AKAP79,
competed the e�ect of cAMP on the reported gene.

6.3. Speci®c e�ects of C subunits

A recent report demonstrates defects in synaptic
plasticity in neurons of mice that are null mutant for
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the Cb subunit. Interestingly, these e�ects could not be
compensated for by the Ca subunit which quantitat-
ively is expressed at a much higher level in the same
cells [124]. Furthermore, Cg does not bind PKI and
may not be exported from the nucleus via PKI con-
taining NES [48,125]. In addition, a very recent report
demonstrates that Ca but not Cb, Cg nor any R subu-
nit bind speci®cally to the cytosolic NFkB inhibitor
IkB, which binds and sequester the transcription factor
NFkB to the cytosol. In this study it was also demon-
strated that Ca is activated through an cAMP-indepen-
dent way through degradation of IkB [126]. Together
these results demonstrate distinct e�ects of particular
C subunits that may be either cAMP-dependent or
independent.

7. Summary and perspectives

A large number of hormones, neurotransmitters,
and other signaling substances that bind to G-protein
coupled cell-surface receptors, converge their signals at
one sole second messenger, cAMP. The question of
how speci®city can be maintained in a signal transduc-
tion system where many extracellular signals leading to
a vast array of intracellular responses, mediate their re-
sponses through one single second messenger, cAMP,
has been subject to thorough investigation and a great
deal of speculation. An increasing number of PKA iso-
zymes consisting of homo- or heterodimers of R subu-

nits (RIa, RIb, RIIa, RIIb ) with associated catalytic
subunits (Ca, Cb, Cg ) may contribute to the answer to
this problem. Furthermore, the various PKA isozymes
display distinct biochemical properties and the hetero-
logus subunits of PKA reveal cell-speci®c expression
and di�erential regulation at the level of gene tran-
scription, mRNA stability and protein stability in re-
sponse to a wide range of hormones and other
signaling substances. Moreover, the existence of a
number of anchoring proteins speci®c to either RI or
RII subunits that localizes either PKAI or PKAII to
distinct subcellular loci, strongly supports the idea that
speci®c functions can be assigned to the various PKA
isozymes. This is further strengthened by the demon-
stration that selective activation of PKAI is necessary
and su�cient for cAMP-mediated inhibition of T and
B cell proliferation and NK cell function which is com-
patible with the notion of isozyme-speci®c e�ects of
PKAI. The observation that mitogenic activation is as-
sociated with redistribution and colocalization of
PKAI, but not PKAII, strongly support the idea of
PKA anchoring as a way of maintaining speci®city of
cAMP e�ects mediated by PKAI.

In the case of RII, a large number of AKAPs have
been demonstrated that localize RII to di�erent subcel-
lular compartments (see Fig. 2). However, with the
exception of cAMP-mediated modulation of AMPA/
kainate channels in neurons and the L-type calcium
channel in heart skeletal muscle no exact functions of
PKAII speci®cally localized to distinct AKAPs have
yet been demonstrated. The dramatic regulation of
type IIb PKA in stereogenic cells points to this iso-
zyme as a candidate for mediating distinct functions in
these cells. The fact the PKAI (RIa2C2) can not com-
pensate for the loss of PKAII (RIIb2C2) in white adi-
pose tissue in mice that are null mutant for the RIIb
subunit, indicate that a number of di�erent cAMP
e�ects yet to be characterized, are speci®cally mediated
through soluble and not anchored PKA isozymes and
vice versa. The fact that certain functions (synaptic
plasticity, IkB binding) are mediated by speci®c C sub-
units further provides ways of achieving speci®city in
cAMP signaling.
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